Activation of AP-1-dependent transcription by a truncated translation initiation factor.

نویسندگان

  • Caroline C L Jenkins
  • Juan Mata
  • Richard F Crane
  • Benjamin Thomas
  • Alexandre Akoulitchev
  • Jürg Bähler
  • Chris J Norbury
چکیده

Int6/eIF3e is a highly conserved subunit of eukaryotic translation initiation factor 3 (eIF3) that has also been reported to interact with subunits of the proteasome and the COP9 signalosome. Overexpression of full-length Int6 or a 13-kDa C-terminal fragment, Int6CT, in the fission yeast Schizosaccharomyces pombe causes multidrug resistance that requires the otherwise inessential AP-1 transcription factor Pap1. Here we show for the first time that Int6CT acts to increase the transcriptional activity of Pap1. Microarray hybridization data indicate that Int6CT overexpression resulted in the up-regulation of 67 genes; this expression profile closely matched that of cells overexpressing Pap1. Analysis of the upstream regulatory sequences of these genes showed that the majority contained AP-1 consensus binding sites. Partial defects in ubiquitin-dependent proteolysis have been suggested to confer Pap1-dependent multidrug resistance, but no such defect was seen on Int6CT overexpression. Indeed, none of the previously identified interactions of endogenous Int6 was required for the activation of Pap1 transcription described here. Moreover, Int6CT-induced activation of Pap1-responsive gene expression was independent of the ability of Pap1 to undergo a redox-regulated conformational change which mediates its relocalization to the nucleus and expression of oxidative stress response genes. Int6CT therefore activates Pap1-dependent transcription by a novel mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis.

Programmed cell death 4 (Pdcd4) is a novel repressor of in vitro transformation. Pdcd4 directly inhibits the helicase activity of eukaryotic translation initiation factor 4A, a component of the translation initiation complex. To ascertain whether Pdcd4 suppresses tumor development in vivo, we have generated transgenic mice that overexpress Pdcd4 in the epidermis (K14-Pdcd4). K14-regulated Pdcd4...

متن کامل

The Potential Mechanism of ZFX Involvement in Cell Growth

Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...

متن کامل

Hippuristanol Reduces the Viability of Primary Effusion Lymphoma Cells both in Vitro and in Vivo

Primary effusion lymphoma (PEL) caused by Kaposi's sarcoma-associated herpesvirus (also known as human herpesvirus-8) shows serious lymphomatous effusion in body cavities. PEL is difficult to treat and there is no standard treatment strategy. Hippuristanol is extracted from Okinawan coral Isis hippuris, and inhibits translational initiation by blocking eukaryotic initiation factor 4A, an ATP-de...

متن کامل

Regulation of ceruloplasmin in human hepatic cells by redox active copper: identification of a novel AP-1 site in the ceruloplasmin gene.

Cp (ceruloplasmin), a copper containing plasma protein, mainly synthesized in the liver, is known to be functional between the interface of iron and copper metabolism. We have reported previously that Cp is regulated by cellular iron status, but the process of the regulation of Cp by copper still remains a subject for investigation. In the present paper, we show that PDTC (pyrrolidine dithiocar...

متن کامل

Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5' distal enhancers: role of reactive oxygen intermediates and AP-1.

Heme oxygenase-1 (HO-1) is a stress-response protein, the expression of which is transcriptionally regulated by agents that cause oxidative stress. We have previously shown that lipopolysaccharide (LPS)-induced HO-1 gene transcription in RAW 264.7 macrophage cells is mediated by a distal enhancer called SX2, located 4 kb upstream from the HO-1 transcription initiation site (Am. J. Respir. Cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 11  شماره 

صفحات  -

تاریخ انتشار 2005